F(-5)=-4x^2

Simple and best practice solution for F(-5)=-4x^2 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for F(-5)=-4x^2 equation:



(-5)=-4F^2
We move all terms to the left:
(-5)-(-4F^2)=0
We add all the numbers together, and all the variables
-(-4F^2)-5=0
We get rid of parentheses
4F^2-5=0
a = 4; b = 0; c = -5;
Δ = b2-4ac
Δ = 02-4·4·(-5)
Δ = 80
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$F_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$F_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{80}=\sqrt{16*5}=\sqrt{16}*\sqrt{5}=4\sqrt{5}$
$F_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-4\sqrt{5}}{2*4}=\frac{0-4\sqrt{5}}{8} =-\frac{4\sqrt{5}}{8} =-\frac{\sqrt{5}}{2} $
$F_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+4\sqrt{5}}{2*4}=\frac{0+4\sqrt{5}}{8} =\frac{4\sqrt{5}}{8} =\frac{\sqrt{5}}{2} $

See similar equations:

| 1/4(8x+16)=2(×+4) | | 3p=6(4p=5) | | F=5x-3 | | (5x+33)+(10x+57)=180 | | -10(v+5)=-10v+-50 | | -14=u/2-18 | | 4500e=30 | | 6a+1=6a+3 | | 2(3a+5)=3a+40 | | 4^x–2=20 | | 3(10+x)=34 | | 0=8z+8- | | m+9/2=0 | | c–8=–9 | | 3(2b-4)+5=5(b+2)-10 | | 6x+11=6(x+5) | | -0.75e-0.375e=-18 | | –5v=–4−4v | | 7b-14=14 | | -8b-(2b-3)=15 | | 2a/a^2=1/3 | | 2n+5+3n=35 | | (30x×7)4+9x-12x=120 | | 2(w-5)=10 | | 5x-5-12x=-12 | | 3x+6=3x+9-3 | | -6(x-2)+14x=60 | | 3/4e-3/8e=-18 | | w/8+3=4 | | -1(1/3)=2r | | 4x-28+2x+4=180 | | (6x^2+3x-2)=2(2x^2-x+5) |

Equations solver categories